Neutron Measurements In Front of and Behind Shielding Using Bonner Spheres and Bubble Dosimeters

- Measurements using Bonner Spheres
 - ▶ Measurements inside of shielded vault
 - ► Measurements outside of vault
 - Outside of Concrete
 - Outside of Iron
- Skyshine Measurements
- NSCL Capabilities
 - ► Previous Work in Support of Space Applications
 - ► Upgrade: Coupled Cyclotron Facility

Int'l Workshop on Secondary Particle
Production
LBNL, March 15-16, 2001
Reginald M. Ronningen
National Superconducting Cyclotron Laboratory
Michigan State University

Motivation for Measurements

- NSCL proposed to upgrade its facility
- Couple K500 and K1200 Cyclotrons
 - o Enhance radioactive ion beam capabilities
 - One particle-µA beams up to mass 36
 - Energies to 200 MeV per nucleon
- Shielding Design Ramifications
- Few data sets available for thick-target neutron yields, especially for heavy beams

First results: G.I. Britvich, A.A. Chumakov, R.M. Ronningen, R.A. Blue, and L.H. Heilbronn, Review of Scientific Instruments **70**, 2314(1999), (erratum) **72**, 1600(2001).

Experiment

• Experiment performed inside and outside concrete shielding of the A1200 fragment analysis beamline

• Beams:

- o ⁴He, ¹²C, and ¹⁶O ions having 155 MeV/u
- Stopping Target:
 - o Hevimet beam stop (95% W, 3.5% Cu, 1.5% Ni)
 - o Diameter was 5.08 cm and the length was 5.093 cm
 - o Ranges of lons in Hevimet:
 - 4He 1.72 cm
 - 12C 0.61 cm
 - 16O 0.46 cm
- Normalize by:
 - o Current Integration
 - o Monitor detector (plastic scintillator) placed outside of shielding

NSCL Bonner Spheres

- 4 mm x 4 mm Lil(Eu) Detector
- Special iron housing (can be used in moderately sized magnetic fringe fields)
- Moderators: none, Cd shield over bare detector, 2-inch, 3-inch, 5 –inch, 8-inch, 10-inch, 12-inch, pseudo-18-inch spheres
- Local preamp, power supply, monitor detector
- Remote MCA, scalers

Bonner Spheres

 6Lil(Eu) detector, polyethylene moderator spheres having different diameters

$$C_r = \int_{E_{\min}}^{E_{\max}} \frac{dN}{dE} R_r(E) dE$$

- Fredholm integral equation
- o C_r is the observed counting rate in the r-th detector/sphere
- o dN/dE is the differential neutron flux density
- R(E) is the (known) energy dependent response function of the r-th detector/sphere
- Discrete Approximation to Integral:

$$C_r = \sum_{i} \frac{dN}{dE} R_r(E_i) \Delta E_i$$

- o i labels each member of the set of "energy groups"
- Typically, 31 energy groups and 8 or 9 measurements: Problem is ill-defined!

Unfolding, Reconstruction Codes

- Solve by iterative techniques
- Solutions can be ill-behaved
- Computer codes:
 - o BUNKI (BUNKIUT) iterative recursion
 - o LOUHI82 least squares
 - o <u>BONDI-97</u> Genetic Algorithm (Bhaskar Mukherjee, ANSTO)
 - <u>PREF</u> Tikhonov's regularization (Protvino)
 - <u>MAXED</u> Maximum Entropy Deconvolution (Paul Goldhagen, Marcel Reginatto, DOE-EML)
- Need a priori spectrum
 - Outside of shielding: "1/E" spectrum
 - o Inside of shielding: Time-of-Flight spectrum, Monte Carlo calculation
- Need to Compare Results from Several Codes
 - Used PREF, a priori was 177.5 MeV/u data of Cecil et al.
 - o Checks using PREF, BUNKIUT, BONDI-97 agree reasonably well

Neutron Spectrum Inside the Shielding

- 155 MeV per nucleon ¹²C stopping in Hevimet
- Solid line is from parameterization of the direct field

Parameterize the Neutron Spectrum

Inside the shielding, $F(E) = \varphi_{direct} + \varphi_{scattered}$

The "direct" spectrum can be expressed by 1:

$$\frac{d^2\sigma}{dEd\Omega} = \varphi_{direct}(E,\theta) = \sum_{i=1}^{3} A_i (E/T_i^2(\theta)) \exp(-E/T_i(\theta))$$

- Evaporation neutrons with nuclear temperature T₁= 2.2 MeV
- Pre-equilibrium emission, temperature T2,
- Cascade process, temperature T₃,

Assume $\varphi_{direct}(E,\theta) = \varphi(E)\varphi(\theta)$

Fitting the energy-dependent part:

$$\varphi_{direct}(E) = E \left[10^{-2} \exp\left(-\frac{E}{2.2}\right) + 2.4 \times 10^{-4} \exp\left(-\frac{E}{11.5}\right) + 3.3 \times 10^{-6} \exp\left(-\frac{E}{36}\right) \right]$$

Parameterize angular distributions of neutron yields:

$$\varphi_{direct}(\theta) = C \times \exp(-\beta \theta)$$

¹ T. Kato and T. Nakamura, "Estimation of neutron yields from thick target by high energy ⁴He ions for the design of shielding for a heavy ion medical accelerator", Nucl. Instr. Meth. Phys. Res. **A311**, 548-557 (1992). T. Nakamura, "Neutron energy spectra produced from thick targets by light-mass heavy ions", Nucl. Instr. Meth. Phys. Res. **A240**, 207-215 (1985).

Angular Distributions

He
 ¹²C
 ¹⁶O

Neutron Yields

The total neutron yield Y_{total} may be obtained from:

$$Y_{total} = 2\pi \int_{0}^{\pi} \varphi(\theta) \sin \theta \, d\theta = 2\pi C \frac{(e^{-\beta\pi} + 1)}{(\beta^2 + 1)}$$

Thick-target neutron yields for ⁴He, ¹²C and ¹⁶O ions having 155 MeV per nucleon:

per nucleon.					
Angle θ	Neutron Yield $\varphi(\theta)$				
	[neutron / sr / incident ion]				
[degrees]	4He	12 _C	16O		
34	.596	.169	.202		
49	.524	.199	.204		
59	.509	.162	.185		
94	.425	.122	.121		
C an	d β values, fron	n fitting to Equation	on 4:		
С					
[n / incident	.80	.26	.29		
ion]					
β	40	<i>5</i> 1	5.1		
[sr-1]	.49	.51	.51		
Total neutron yields					
[neutrons / incident ion]:					
	4.90	1.56	1.74		

"Moyer Model¹", Approach

Assume the dose-equivalent due to neutrons penetrating a thick shield is proportional to the high-energy particle fluence, $h(E_p)$, and the amount of shielding present, by:

$$H(E_p, \theta, \frac{d}{\lambda}) = \frac{h(E_p)}{r^2} \exp(-\beta \theta) \times \exp(-d(\theta)/\lambda)$$

- θ and r are the angle and distance, respectively, between the beam direction and the "neutron detector"
- β is a constant
- $d(\theta)$ is the effective shielding thickness at angle θ
- ullet λ is the attenuation length for neutrons in the shielding material

For 4He:

• First, we note the angular distributions have a shallow slope. Then, $\frac{(e^{-\beta\pi}+1)}{(\beta^2+1)} \approx 1$

$$Y_{total} = 2\pi C$$

• The maximum dose equivalent is when $\theta = \frac{\pi}{2}$. This condition allows one to estimate the maximum lateral shielding necessary for some desired dose-equivalent outside of the shielding.

$$H(r, \frac{d}{\lambda}) = \frac{0.5 \times Y_{total} \times \langle h \rangle}{4\pi r^2} \exp(-\frac{d}{\lambda})$$

¹ B.J. Moyer, Evaluation of Shielding Required for the Improved Bevatron, Lawrence Radiation Laboratory Report UCRL-9769, June, 1961. B.J. Moyer, Method of Calculating the Shielding Enclosure of the Bevetron, in *Premier Colloque International sur la Protection Apres des Grands Acceleratuers* (Presses Universitaires de France, Paris, 1962), p.65.

"Moyer" Approach--continued

- 0.5Y_{total} -- neutron yield from pre-equilibrium emission and cascade processes
- Use the fluence-to-dose equivalent conversion factor
 - o <h>= 4.5x10⁻¹⁰ Sv-cm²/neutron for <E> = 30 MeV, the average neutron energy for ϕ_{casc}
- Estimate λ using data for point 1:
 - \circ H(point 1, ⁴He ions) = 1.69x10⁻¹⁹ Sv/ion
 - \circ r = 403 cm
 - \circ d = 308 g/cm²
 - Ytotal = 4.9 neutrons/ion
- We obtain $\lambda = 38 \text{ g/cm}^2$
- Finally,

$$H(r,d) = \frac{0.5 \times Y_{total} \times 4.5 \times 10^{-10}}{4\pi r^2} \exp(-\frac{d}{38}) [Sv/ion]$$

This equation is now useful for shielding design.

Neutron Spectrum outside the Shielding

Results Outside the Concrete Shielding

Integral characteristics of the neutron fields outside of the K1200 cyclotron shielding for ^{12}C ions.

	<e></e>	<h></h>	F	Н
	[MeV]	[Sv cm ²]	[neutron/cm ² -	[Sv/ion]
Point			ion]	
1	3.11	1.91E-10	6.51E-10	1.24E-19
2	3.11	1.91E-10	5.64E-10	1.08E-19
3	3.11	1.91E-10	5.39E-10	1.03E-19
4	1.00	1.70E-10	3.76E-10	6.39E-20
5	.350	8.00E-11	2.41E-10	1.93E-20
6	.300	7.50E-11	1.51E-10	1.13E-20
7	.300	7.50E-11	1.10E-10	8.23E-21
8	.300	7.50E-11	3.19E-10	2.39E-20
8*	.160	5.20E-11	3.27E-10	1.70E-20

Results Outside of Iron Shielding

Integral characteristics of the neutron fields above the K1200 cyclotron roof for ⁴He ions.

	<e></e>	<h></h>	F	Н
	[MeV]	[Sv cm ²]	[neutron/cm ² -	[Sv/ion]
Point			ion]	
1	3.17	1.32E-10	1.28E-09	1.69E-19
1T	5.70E-02	2.91E-11	9.52E-09	2.77E-19
2T	5.70E-02	2.91E-11	1.42E-08	4.12E-19
3T	5.70E-02	2.91E-11	1.61E-08	4.67E-19
4T	5.70E-02	2.91E-11	1.56E-08	4.53E-19
5T	5.70E-02	2.91E-11	1.33E-08	3.87E-19
7T	5.70E-02	2.91E-11	6.71E-09	1.95E-19
9T	5.70E-02	2.91E-11	2.51E-08	7.30E-19
10T	5.70E-02	2.91E-11	2.54E-08	7.39E-19
11T	5.70E-02	2.91E-11	1.76E-08	5.11E-19

Motivation for Additional Inside-Shield Measurements

- Few data sets available for thick-target neutron yields, especially for heavy beams
- Experiments at the NSCL are predicted to spend more time using heavy (A > 30) ion beams
 - When we started (late 1993): Many experiments, much accelerator time devoted to beams such as 12C, 14N, 16O, 18O, 22Ne
 - At present, expect large demand for Ar, Kr, Xe beams
- How does one assess shielding in this case?
 - o G.I. Britvich, L.H. Heilbronn, R.M. Ronningen, and P. Rossi

Measurements Inside of Shielding in Support of the NSCL's Coupled Cyclotron Facility

• Beams:

- o ⁴He, ¹²C, and ¹⁶O ions having 155 MeV/u
- o 40 Ar ions having 150 MeV/u

Stopping Target:

- Solid cylinder of Hevimet
- o Diameter was 5.08 cm and the length was 5.093 cm
- o Ranges of lons in Hevimet:
 - 4He 1.72 cm
 - 12C 0.61 cm
 - 160 0.46 cm
 - 40Ar 0.20 cm

Current Integration:

- The target was pressed into a long copper pipe. Insulating rings were placed around this pipe, and the assembly was placed in the beam line, forming a Faraday cup.
- Monitor detector (plastic scintillator) also used, at 2 meters and 20 degrees

Details

Detectors

 Commercial Bonner-sphere spectrometer, having polyethylene spheres with diameters of 2, 3, 5, 8, 10, and 12 inches.

o Additionally:

- "bare" detector, i.e., without using a sphere
- bare detector covered with cadmium foil
- For the ⁴⁰Ar measurements, a cylinder of polyethylene, having 18 inches in length and 17 inches in diameter, was used as an 18-inch pseudo-sphere
- The detector was a cylinder (4 mm diameter, 4 mm length) crystal of Lil(Eu), enriched in ⁶Li, mounted to a photomultiplier tube.
- The detector-photomultiplier housing was constructed of low-carbon steel, for additional magnetic shielding.
- One-meter Distance from Target

Angles

o 0, 30, 60, 90, and 120 degrees, with respect to the beam direction

Preliminary Results

- Data unfolded using BUNKIUT
 - o Sanna matrix
 - o "1/E" a priori spectrum

Preliminary Results

- Neutron yields from ion beams of ⁴He, ¹²C, ¹⁶O at 155 MeV/u, and ⁴⁰Ar at 150 MeV/u.
- The number of neutrons per ion is shown for two different energy cuts, and is compared to the previous measurement.

Ion	Neutrons/ion E > 0 MeV	Ratio to He	Neutrons/ion E > 4 MeV	Ratio to He	Compare to Britvitch <i>et al</i> .	Ratio to He
⁴ He	3.1	1.00	1.0	1.0	4.9	1.00
¹² C	2.4	0.78	0.79	0.8	1.56	0.32
¹⁶ O	2.2	0.69	0.72	0.7	1.74	0.36
⁴⁰ Ar	1.6	0.52	0.46	0.5		

Corrections to Make

Target Self-Shielding

- Measurements with Beam
 - 90 degrees
 - Measurements using the beam were made first with the target alone, then with additional Hevimet.
- Measurements using a PuBe source (about 4.5 MeV average neutron energy)
 - first with the target removed and then with the source behind the target.
- Both sets of measurements, using the data for the three largest spheres, gave an estimation of the average interaction length of about 1.27 cm.

Room Scattering

- o "Shadow Bar"
 - Cylinder of iron, having a diameter of 10.16 cm and a length of 30.48 cm, placed between the target and the spectrometer at 90 degrees.
- PuBe source + Shadow Bar
 - Truncated cone of brass, 27.94 cm-long, tapered from 17.15 cm in diameter to 10.80 cm
 - Placed at zero degrees

Can We Make Estimates?

 We try to make estimates using the experimental data of Heilbronn et al. (Nucl. Sci. Eng. 132, 1(1999)):

System	System Yield		Multiplicity
(155 MeV/u)	(Neutrons/ion)	Fraction	(Neutrons/interaction)
⁴ He + Al	0.348(13)	0.34	1.02(4)
$^{12}C + Al$	0.179(5)	0.18	0.99(3)

• Approach:

- Use a known multiplicity or yield
- Calculate ratios of multiplicities (unknown/known)
- Calculate the number of interactions
- o Estimate the unknown yield

Approach

After Madey et al.

- R. Madey, B.D. Anderson, R.A. Cecil, P.C. Tandy, and W. Schimmerling, Phys. Rev. C 28, 706(1983):
- Ratio of Multiplicities for two different beams on the same target:

$$R = \frac{M\left(A_{1}, Z_{1}, A_{t}, Z_{t}, \frac{E}{A}\right)}{M\left(A_{2}, Z_{2}, A_{t}, Z_{t}, \frac{E}{A}\right)} = \frac{\sigma\left(A_{1}, Z_{1}, A_{t}, Z_{t}, \frac{E}{A}\right)}{\sigma\left(A_{2}, Z_{2}, A_{t}, Z_{t}, \frac{E}{A}\right)} \times \left(\frac{A_{1}^{1/3} + A_{t}^{1/3}}{A_{2}^{1/3} + A_{t}^{1/3}}\right)^{5}$$

• Calculate interacting fractions:

Interaction fraction =
$$-\frac{6.022 \times 10^{23}}{A_t} \times \int_{0}^{E} \frac{\sigma\left(A_i, Z_i, A_t, Z_t, \frac{E}{A}\right)}{\frac{dE}{d\rho x}} dE.$$

- We used total reaction cross sections parameterized by Kox et al. and Townsend and Wilson:
 - o L.W. Townsend and J.W. Wilson, Phys. Rev. C 37, 892(1988)
 - S. Kox et al., Phys. Rev. C 35, 1678 (1987)

Predictions

Estimates of neutron yields from thick targets for beams available from the NSCL's Coupled Cyclotron Facility, relative to carbon:

Ion	Reactions	Yield/Inc. Ion	Ratio of Yields
	per Ion	at 155 MeV/u	Compared to ¹² C
¹² C	0.224	0.18	1.0
¹⁸ O	0.224	0.21	1.2
²² Ne	0.189	0.19	1.1
³⁶ Ar	0.115	0.14	0.8
⁴⁸ Ca	0.139	0.19	1.1
⁸⁴ Kr	0.096	0.18	1.0

- Compare 36Ar/12C ratio of 0.8 to experimentally determined 40Ar/12C ratio of 0.6 0.7.
- Reasonable agreement

Skyshine Measurements at the NSCL

- Measurements of skyshine were made at the NSCL
 - o R.M. Ronningen, B. Mukherjee, and P. Rossi
- Source of skyshine neutrons:
 - ▲ Region of the A1200 fragment mass separator where the beam is dumped
- Measure:
 - ▲ Total dose equivalent at reference point
 - ▲ Average neutron energy
 - ▲ Neutron spectrum
 - ▲ Dose equivalents at 25, 50, 75, 100, and 110 meters from reference point
- Using:
 - ▲ Bonner sphere set
 - ▲ Eberline NRD neutron rem meter
- Three Beams
 - ▲ 100 MeV/u 13C, 100 MeV/u 20Ne, 140 MeV/u 4He

NSCL Floor Plan

Bubble Dosimeters

▲ BD-100R neutron "bubble" dosimeters

- Obtained from Bubble Technology Industries, Chalk River, Canada
- Reusable, integrating passive dosimeters
- Elastic polymer throughout which droplets of superheated liquid have been dispersed
- When these droplets are struck by neutrons, they form small gas bubbles that remain fixed in the polymer
- Visible detection of neutron radiation
- Real-time dose determination
- The detector response in independent of dose rate and is tissue equivalent.
 - Sensitivities of 22 and 47 bubbles per millirem The 22bubbles/mrem dosimeters were used at 25 and 50 meters.
 - The 47-bubbles/mrem dosimeters were used at the other distances. Two of these were used at 115 m and the results were averaged.

Schematic of Setup

Skyshine Source Neutron Spectrum

- Neutron energy spectrum at the reference point during the bombardment of the aluminum stopping bar with the 140 MeV/nucleon ⁴He ions in the Analysis Hall.
- The average neutron energy was determined to be 2.5 MeV.

Bubble Dosimeters

▲ BD-100R neutron "bubble" dosimeters

- Obtained from Bubble Technology Industries, Chalk River, Canada
- Reusable, integrating passive dosimeters
- Elastic polymer throughout which droplets of superheated liquid have been dispersed
- When these droplets are struck by neutrons, they form small gas bubbles that remain fixed in the polymer
- Visible detection of neutron radiation
- Real-time dose determination
- The detector response in independent of dose rate and is tissue equivalent.
 - Sensitivities of 22 and 47 bubbles per millirem The 22bubbles/mrem dosimeters were used at 25 and 50 meters.
 - The 47-bubbles/mrem dosimeters were used at the other distances. Two of these were used at 115 m and the results were averaged.

Photo of Exposed Bubble Dosimeter

BDR 100 Characteristics:

Energy Range: < 200 keV to > 15 MeV

Dose range: 1 – 5000 μSv (0.1 – 500 mrem)

- \circ Sensitivity: typical is 0.033 33 bubbles/µSv (0.33 33 bubbles/mrem at 20 degrees Celsius, with an accuracy of \pm 20% when calibrated by an ²⁴¹AmBe neutron spectrum).
- Temperature range: 10 35 degrees C. Can be obtained with temperature compensation.
- o Tissue equivalent
- Gamma insensitive
- Isotropic
- o Can be reused (about US\$65 each)

Skyshine Measurement Results

- Patterson and Thomas formula: $\phi = \frac{aQ}{4\pi r^2}e^{-r/\lambda}(1-e^{-r/\mu})$
- Build-up relaxation length in air (λ) fixed at 56 meters.
- Calculation:

$$H(mrem) = \frac{1.45x10^5}{4\pi r^2} e^{-r/64.3} (1 - e^{-r/56})$$

Effective Absorption Length

Effective absorption length λ as a function of

upper neutron energy E for 1/E spectra.

[Adapted from G. R. Stevenson and R. H. Thomas, "A simple procedure for the estimation of neutron skyshine from proton accelerators", Health Phys. <u>46</u> (1984) 115-122.]

 Small value of λ (~ 64 meters) consistent with neutron spectrum having small average energy (~ 2.5 – 5 MeV)

Summary

- Characterized the skyshine source spectrum
- Measured skyshine
 - Bubble dosimeters cheap alternative to electronically-read, moderated detectors such as the DePangher Long Counter
- Used classic equation to describe results
- Use operations matrix to predict doses for different beams, varying times, distances, site boundaries etc.

NSCL Support of Space Science

Calibrations of Advanced Composition Explorer instruments

 Test charged particle response of CsI calorimeter detector prototypes for GLAST

NASA-supported beamline for Single Event Effects Research

Coupled Cyclotron Facility (CCF) Capabilities

The figure above shows the performance of the K1200 cyclotron in stand-alone mode (dash-lines) compared to when the K500 and K1200 cyclotrons operated in a coupled mode (solid lines).

Large radioactive-ion-beam intensity gains result:

	¹¹ Li	¹⁹ Ne	³² Mg	⁵⁶ Ni	¹³² Sn
K1200 Stand-Alone Operation	2.5 x 10 ³	6 x 10 ⁷	1.2 x 10 ³	7 x 10 ⁴	2
CCF	4 x 10 ⁶	1 x 10 ¹⁰	3 x 10 ⁶	4 x 10 ⁸	4 x 10 ⁴
Gain	1.6x 10 ³	1.7×10^2	2.5×10^3	5 x 10 ³	2 x 10 ⁴

